\[ \newcommand\le\leqslant \newcommand\ge\geqslant \newcommand\C{\mathbb{C}} \newcommand\R{\mathbb{R}} \newcommand\Z{\mathbb{Z}} \newcommand\adef{\stackrel{\text{def}}{\Longleftrightarrow}} \newcommand\defeq{\mathrel{:=}} \newcommand\defqe{\mathrel{=:}} \newcommand\d{\mathrm{d}} \newcommand\i{\mathrm{i}} \newcommand\surj\twoheadrightarrow \newcommand\incl\hookrightarrow \newcommand\unif{\stackrel{\text{unif}}{\longrightarrow}} \newcommand\cpt{\stackrel{\text{cpt}}{\longrightarrow}} \newcommand\openset{\stackrel{\text{open}}{\subset}} \newcommand\cptset{\stackrel{\text{cpt}}{\subset}} \newcommand\bar\overline \newcommand\llbracket{[\![} \newcommand\rrbracket{]\!]} \newcommand\uniq{\exists!} \DeclareMathOperator\limsup{\overline{lim}} \]
Chapter 1
§1.3
Theorem 2.1
\(c \defeq \sum c_n (z - a)^n \in \C \llbracket z - a \rrbracket\), \(\rho \defeq\) radius of convergence of \(c\). \[ \begin{alignat*}{0} f \colon &\Delta_\rho (a) &&\longrightarrow &&\C \\ &\style{transform: rotate(270deg)}{\in} && &&\style{transform: rotate(270deg)}{\in} \\ &z &&\longmapsto &&\sum c_n (z - a)^n \end{alignat*} \] とおく.ただし, \[ \Delta_\rho (a) = \{ z \mid |z - a| < \rho \}. \]
Then,
- \(f\) は holomorphic (i.e., \(\C\)-\(C^1\)) on \(|z - a| < \rho\) で,its derivative は \(f' (z) = \sum (n + 1) c_{n + 1} ( z - a )^n\).
\(a = 0\) としてよい.
\(f ' (z) = \sum (n + 1) c_{n + 1} z^n\) を示せば,Proposition 1.10 より,\(f\) が \(\C\)-\(C^1\) であることが分かる.
\(z_0 \in \Delta_\rho (0)\) と \(|z_0| < {}^{\exists} r < \rho\) を任意に取り,\(\varepsilon \defeq r - |z_0|\) とおく.
このとき, \[ |z - z_0| \le \varepsilon \Longrightarrow |z| \le r < \rho \] であるから, \[ \left| c_n \sum_{i = 0}^{n - 1} z^i z_0^{n - i} \right| \le n |c_n| r^{n - 1} \] となる.Theorem 1.12 より,\(\rho =\) radius of convergence of \(\sum (n + 1) c_{n + 1} z^n \in \C \llbracket z \rrbracket\) であるから,power series \(\sum c_n \sum_{i = 0}^{n - 1} z^i z_0^{n - i} \in \C \llbracket z \rrbracket\) は nomally convergent on \(|z - z_0| \le \varepsilon\).
よって, \[ \begin{alignat*}{0} \delta_f \colon &\bar{\Delta_{\varepsilon} (z_0)} &&\longrightarrow && \C\\ &\style{transform: rotate(270deg)}{\in} && &&\style{transform: rotate(270deg)}{\in} \\ &z &&\longmapsto &&\sum_{n = 0}^\infty c_n \sum_{i = 0}^{n - 1} z^i z_0^{n - i} \end{alignat*} \] は continuous.
一方, \[ \begin{align*} f (z) - f (z_0) &= \sum c_n (z^n - z_0^n) \\ &= \delta_f (z) (z - z_0) \end{align*} \] であるから,\(f' (z_0) = \delta_f (z_0) = \sum (n + 1) c_{n + 1} z_0^n\).
Corollary 2.2
\(c \defeq \sum c_n (z - a)^n \in \C \llbracket z - a \rrbracket\), \(\rho \defeq\) radius of convergence of \(c\). \[ \begin{alignat*}{0} f \colon &\Delta_\rho (a) &&\longrightarrow &&\C \\ &\style{transform: rotate(270deg)}{\in} && &&\style{transform: rotate(270deg)}{\in} \\ &z &&\longmapsto &&\sum c_n (z - a)^n \end{alignat*} \] とおく.
Then,
- \(f\) は \(\C\)-\(C^\infty\) on \(|z - a| < \rho\).
Theorem 2.1 と Theorem 1.12 より,明らか.
Theorem 2.3
\(D \subset \C\) be a domain, \(f \colon D \to \C\) a holomorphic function, \(\Delta_r (a) \subset D\) an open disk of radius \(r\) at the center \(a \in D\).
- \(\uniq c = \sum c_n (z - a)^n \in \C \llbracket z - a \rrbracket\) such that
- radius of convergence of \(c\) \(\ge r\);
- \(f (z) = \sum c_n (z - a)^n\) for any \(z \in \Delta_r (a)\).
Uniqueness
\(f (z) = \sum c_n (z - a)^n\) と書けたとすると,Theorem 2.1 を繰り返し用いて, \[ f^{(n)} (a) = c_n n ! \] を得る.
Existence
\(z \in \Delta_r (a)\) を取り,\(r' \defeq |z - a|\) とおく.
任意の \(\zeta \in \Delta_r (a)\) with \(|\zeta - a| \ (\defqe r'') > r'\) に対して, \[ \begin{align*} \left| \frac{f (\zeta)}{(\zeta - a)^{n + 1}} (z - a)^n \right| &\le \frac{M}{r''} \left( \frac{r'}{r''} \right)^n \end{align*} \] とできる.ただし, \[ M \defeq \sup_{|\zeta - a| = r''} | f (\zeta) |. \] よって,series \(\sum f (\zeta) (z - a)^n / (\zeta - a)^{n + 1} \in \C \llbracket (\zeta - a)^{-1} \rrbracket\) は normally convergent on \(|\zeta - a| = r''\).
さらに, \[ \begin{align*} \frac{f (\zeta)}{\zeta - z} &= \frac{f (\zeta)}{\zeta - a} \left( 1 - \frac{z - a}{\zeta - a} \right)^{-1} \\ &= \sum \frac{f (\zeta)}{(\zeta - a)^{n + 1}} (z - a)^n \end{align*} \] であるから,Theorem 1.6 と Theorem 1.1 (2) より, \[ \begin{align*} \int_{|\zeta - a| = r''} \frac{f (\zeta)}{\zeta - z} \, \d \zeta &= c'_n (z - a)^n. \end{align*} \] ただし, \[ c'_n \defeq \int_{|\zeta - a| = r''} \frac{f (\zeta)}{(\zeta - a)^{n + 1}} \, \d \zeta. \]
一方,Cauchy’s integral formula より, \[ f (z) = \frac{1}{2 \pi \i} \int_{|\zeta - a| = r''} \frac{f (\zeta)}{\zeta - z} \, \d z \] であるから,\(c_n \defeq c'_n / 2 \pi \i\) とおけば, \[ f (z) = \sum c_n (z - a)^n \] となる.
Cauchy’s integral theorem より,\(c_n\) は independent of \(r'\) & \(r''\) が分かるから,\(\sum c_n (z - a)^n \in \C \llbracket z - a \rrbracket\) が求める power series である.
Theorem 2.4
\(D \subset \C\) be a domain, \(f \colon D \to \C\) a holomorphic function, \(\Delta_r (a) \subset \bar{\Delta_r (a)} \subset D\).
- \(f\) は \(\C\)-\(C^\infty\);
- For any \(z \in \Delta_r (a)\), \[ f^{(n)} (z) = \frac{n !}{2 \pi \i} \int_{|\zeta - a| = r} \frac{f (\zeta)}{(\zeta - z)^{n + 1}} \, \d \zeta. \]
Theorem 2.3 と Corollary 2.2 より,\(f\) が \(\C\)-\(C^\infty\) であることは従う.
\(f^{(n)}\) の表式は,Theorem 2.3 の証明から分かる.
Theorem 2.5
\(D \subset \C\) be a domain, \(f \colon D \to \C\): continuous.
TFAE:
- \(f\) は holomorphic;
- \(f\) は \(C^1\) on \(D\) で,satisfies the Cauchy-Riemann eq. (\(\partial f / \partial \bar{z} = 0\));
- 任意の simply connected domain \(\Delta \subset D\) と closed (piecewise) regular curve \(\gamma \colon [0, 1] \to \Delta\) に対して, \[ \int_\gamma f (z) \, \d z = 0; \]
- 任意の simply connected domain \(\Delta \subset D\) に対して,\(\exists\) holomorphic \(F \colon \Delta \to \C\) such that \(F' = f\);
- 任意の open disk \(\Delta \subset \bar\Delta \subset D\) と \(z \in \Delta\) に対して, \[ f (z) = \frac{1}{2 \pi \i} \int_{\partial \Delta} \frac{f (\zeta)}{\zeta - z} \, \d \zeta; \]
- 任意の open disk \(a \in \Delta \subset D\) に対して,\(\exists \sum c_n (z - a)^n \in \C \llbracket z - a \rrbracket\) such that \(f (z) = \sum c_n (z - a)^n\) on \(z \in \Delta\).
今までの theorems / corollaries から明らか.